Distributed Energy Resources Chicago Industrial Energy Plan

GAS TECHNOLOGY INSTITUTE (GTI) - DES PLAINES, IL

Project Team

ORNL Techinical Project Officer

D. Tom Rizy

Principal Investigator - GTI

K. DePodesta

Project Partners

City of Chicago Department of Environment University of Illinois at Chicago - ERC

Project Mission

- Demonstrate Distributed Energy's contribution to a **Sustainable Urban Environment**
 - Lower Energy Costs and Improve Grid Utilization
 - Improve Overall Air Quality
- Increase Energy Efficiency
- Contribute to DOE's Goal to deploy 50GW DER - Identify and develop small scale industrial market
- Address Barriers
- Identify incentives
- Reduce DER costs via standard designs
- Improve industrial processes

Approach

- Develop standard program to maximize industrial DER in an urban setting
 - Can be repeated in other cities
 - Relieve constrained grid areas
 - Reduce emissions from existing sources
- Develop advanced DER systems for 5 to 10 sites
- Provide Chicago with a DER plan for industrial

Project Methods

- PHASE 1 (Completed June 2002)
 - Industrial Characterization Study
 - Site Selections
 - Chicago Industrial Energy Plan
- PHASE 2 (Completion January 2003)
 - Plant Evaluations/Data Gathering
 - Expert Panel Meeting
 - Engineering Studies
 - DE Integration Designs

Expert Panel Meeting Results

- Renewable Energy Methods
 - Digester for food waste (biofuel)
 - Digester for waste clean water integration
 - Use food grade oil from process for fuel
- Thermal depolymerization carbon waste for fuel Emission Reduction Methods
 - Combust emissions using exhaust
 - Combust emissions on intake side
 - Xonon Gas Turbine Low NOx
 - Ion exchange resins for VOC
- Heat Recovery Methods
 - Direct heating with prime mover exhaust
 - Process exhaust HR for preheating
 - Dry sludge waste using exhaust
 - Indirect heat exchanger for process oil heating - Desiccant for humidity controlled process
 - Absorption chiller using exhaust
 - High and low pressure steam production
 - Hot water production
 - Thermal storage
- Expert Panel Meeting Facilitated by Energetics, Inc.
 - Equipment Manufacturers
 - Emission Control Experts
 - Project Developers
 - Distributed Generation Industry Experts
- Project Team Members

Results

- Technologies and Methods
- Limitations and Requirements
- Conceptual Designs for Heat Recovery, Emissions Reduction and Process Improvement

GTI Energy Plan Incentives

- Demand Charges
- Expand on-peak demand charge to reflect true cost
- Standby Charges
- Waive standby fee for on-peak clean energy (DER)
- Utility Incentives
- Cost savings from avoided distribution upgrades
- Eliminate self-generation displacement rates
- Interconnect Fees
- Establish reasonable fixed cost interconnect fee
- Emissions Credits
- Expand emissions credits and trading programs
- Low interest loans
- 0% to 3% loans for on-peak clean energy projects
- Reduce Technology Risk
- Identify turnkey energy suppliers for the City

Results of Engineering Feasibility Studies

CANDIDATE PLANT	SYSTEM SIZE (kW)	ANNUAL SAVINGS	GAS ENGINES WITH HR APPLICATION
Concrete	7000	\$1,186K	Exhaust to dryer furnace
Confectionery	3450	\$798K	Exhaust for 125# steam, JW for 15# steam
Chemical	2050	\$319K	SCR required, Exhaust and JW for 180F water
Dairy and Meat	1520	\$296K	Exhaust for 80# steam
Snack Food	1300	\$265K	Exhaust to oil heat HX
Primary Metals	1025	\$243K	Exhaust to preheat furnace combustion air
Metal Products	775	\$195K	Exhaust and JW 15# stm
Metal Plating	615	\$64K	Exhaust and JW 15# stm

Summary

- Significance of 2002 Accomplishments
- Annual energy savings for case studies: \$100/kW to \$250/kW
- Doubling gas price is less than a 25% change in annual savings - Chicago electric rate structure favors on peak solutions
- Most cost effective HR appears to be steam and direct exhaust
- Planned Accomplishments for 2003 - Find industries to collaborate development of standard designs
 - Develop a plan to remove barriers and implement incentives
- Identify funding sources and options from energy providers

- Assist sites with bid evaluations and seek design options

Exhaust to Furnace Application

Steam Application

Exhaust to Oil Heat Exchanger Application

